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The cubic nonlinear Schroedinger equation (NLS) describes the 
space-time evolution of narrow-banded wave trains in one space and 
one time (1 + 1) dimensions. The richness of nonlinear wave motions 
described by NLS is exemplified by the fully nonlinear envelope soliton 
and “breather” solutions, which are fully understood only in terms of 
the general solution of the equation as described by the inverse 
scattering transform (IST); the method may be viewed as a nonlinear 
generalization of the linear Fourier transform. Herein we develop a 
numerical algorithm for determining the scattering transform spectrum 
of a nonlinear wave train described by the NLS equation. The analysis 
of space or time series data obtained from computer simulations of non- 
linear, narrow-band wave trains or from experimental measurements is 
thus a central point of discussion. In particular we develop a numerical 
algorithm for computing the direct scattering transform (DST) which 
may be interpreted as the nonlinear Fourier spectrum of the complex 
envelope function of a wave train; the fact that the nonlinear Fourier 
modes are constants of the motion for all time provides a physical basis 
for the analysis of data. While the nonlinear Fourier method is specifi- 
cally applied to the NLS equation, the approach is easily generalized to 
include the class of spectral problems due to Ablowitz, Kaup, Newell, 
and Segur (AKNS). This class includes several other nonlinear wave 
equations of physical interest in (1 + 1), including the Korteweg- 
de Vries (KdV), modified KdV, sine-Gordon, and sinh-Gordon 
equations. 0 1992 Academic Press. Inc. 

1. INTRODUCTION 

The theoretical study of nonlinear wave motion was 
revolutionized by the discovery of the inverse scattering 
transform by Martin Kruskal and co-workers more than 20 
years ago (GGKM) [ 11. This new method of mathematical 
physics was inspired by the important computer 
experiments of Zabusky and Kruskal [2] who studied 
numerical solutions of the Korteweg-de Vries (KdV) equa- 
tion. The GGKM scattering transform provides the general 
solution to the KdV equation for asymptotic, infinite-line 
boundary conditions. The approach is a generalization of 
ordinary Fourier analysis to nonlinear problems and has 
been extended to a large class of physically relevant non- 
linear wave equations by Zakharov and Shabat [3], and 

Ablowitz, Kaup, Newell, and Segur (AKNS) [4]. Among 
the integrable equations in this class are the KdV, modified 
KdV, nonlinear Schroedinger (NLS), sine-Gordon, and 
sinh-Gordon equations. 

Soon after the discovery of the spectral solution to KdV 
on the infinite line, Dubrovin, Matveev, and Novikov 
[ $61 found the solution to KdV for periodic boundary con- 
ditions, and consequently discovered how to generalize the 
scattering transform to nonlinear Fourier series. Periodic 
IST was subsequently extended to other nonlinear wave 
equations such as NLS, sine-Gordon, and sinh-Gordon 
equations [7-l 11. 

Because the Fourier transform and Fourier series have 
long been important tools in the analysis of wave data, it is 
perhaps surprising that IST has not been used more exten- 
sively for the analysis of nonlinear data. There are evidently 
two reasons why this has not occurred. One is the mathe- 
matical complexity of the scattering transform, particularly 
for periodic boundary conditions. Consequently the physi- 
cal interpretation of this mathematical machinery has not 
been easily transparent and readily amenable to the analysis 
of data. The second difficulty is that reliable numerical 
methods have not been available for efficiently using IST in 
an experimental context. 

Up to the present time numerical methods have been 
available only for the KdV, NLS, and sine-Gordon equa- 
tions. Results for the KdV equation have been documented 
in a series of papers by Osborne and co-workers [12-231. 
Numerical procedures for the sine-Gordon equation (and 
the NLS equation in a certain limit of sine-Gordon) have 
also been developed [ 11,241; a sixth-order numerical 
integrator was used to obtain solutions to the spectral eigen- 
value problem. A discrete version of the inverse scattering 
transform for the AKNS class of spectral problems on the 
infinite line has been developed by Ablowitz and Ladik 
[25, 261. 

In the present paper we focus on numerical methods for 
determining the nonlinear spectral structure of wave motion 
described by the NLS equation for infinite-line boundary 
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conditions. NLS was first derived by Zakharov [27], who 
together with Shabat [3] found the inverse scattering trans- 
form solution to NLS on the infinite line. Physical motiva- 
tion for the study of the NLS equation stems from the 
important work of Yuen and Lake [28-311 who verified in 
laboratory experiments the existence of envelope solitons, 
which remarkably resemble the soliton solutions to the NLS 
equation. These solutions arise asymptotically in time from 
an initial, narrow-banded wave train (see Fig. 1). 

In the present study we focus on and extend an approach 
for numerically determining the scattering transform of 
NLS as recently developed by Osborne [22] for the KdV 
equation (see also [23]). The procedure for NLS is 
illustrated in Fig. 2. A dynamically evolving nonlinear, 
narrow-banded wave train (Fig. 2a) is assumed to have a 
complex envelope q(x, t) = A(x, t) exp($(x, t)), for A(x, t) 
the real envelope and 4(x, t) the real phase. The envelope 
q(x, t) is assumed to be computable from the wave train by 
(say) the Hilbert transform. The wave train is numerically 
sampled at discrete intervals dx and the discrete Hilbert 
transform is then used to generate a discrete envelope 
function as shown in Fig. 2b. The discrete envelope is 
subsequently replaced by a piecewise constant function 
whose “partitions” are centered around the discrete points 
(Fig. 2~). The numerical scattering transform algorithm 
developed here is analytically exact for this piecewise 
constant envelope function. 

It is important in what follows to understand that we are 
not presenting an approach to numerically integrate the 
NLS equation in order to obtain its space-time solution, 

Envelope solitons 

/\ 

(b) 

Radiation sea 

FIG. 1. (a) A narrow-banded wave train at time r = 0 evolves into 
envelope solitons and a background sea of radiation as t -+ cc (b). Note 
that we have taken the spatial scale in (b) to be much greater than in 
(a) to include the entire wave train after it has been substantially spatially 
dispersed. 

(a) 

FIG. 2. (a) A narrow-banded nonlinear wave train q(x, 0) with 
complex envelope q(x, 0) = A(x, 0) exp[i&x, 0)] is assumed given as a 
function of x at time t = 0. Note that the wave train is localized on the 
interval -cc <x < co, i.e., A(x, 0) -+ 0 as 1x1 -+ co. The wave train of (a) is 
discretized at intervals Ax and, with the aid of the Hilbert transform, the 
discrete envelope function A(x,, 0) is computed (b). In order to determine 
the scattering transform the discrete envelope in (b) is replaced by a 
piecewise constant function (c). The direct scattering transform algorithm 
given herein is analytically exact for wave envelopes of this type. 

q(x, t), given a particular initial condition q(x, 0). There is 
already a marvelous, vast literature on standard techniques 
for numerical integrations of this type, which include split- 
step Fourier methods, modal decomposition, and iinite-dif- 
ferencing. What we are instead doing herein is developing 
methods for determining the spectral structure of q(x, to) (to 
is some arbitrary fixed value of time), based upon the inverse 
scattering transform. Since IST is a kind of nonlinear 
Fourier analysis, we are therefore developing methods for the 
nonlinear Fourier analysis of space series (and, as we discuss 
elsewhere, also of time series [ 15, 173). We foresee a num- 
ber of applications of our approach, including (1) the space 
and time series analysis of experimental data, (2) the space 
and time series analysis of computer generated signals, 
(3) the checkout of numerical algorithms (such as those 
mentioned above for the space-time integration of the 
NLS equation), and (4) the search for “chaotic effects” 
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in NLS. All of these applications present the possibility of 
uncovering new physics in a wide variety of problems. 

The analysis of data using the scattering transform is 
becoming increasingly sophisticated [ 19-211 and a number 
of studies are now under way in the other areas. These 
include the interesting area of research in which certain 
“chaotically appearing solutions” to the nonlinear 
Schroedinger equation appear. Despite intensive studies, 
the behavior of solutions of the nonlinear Schroedinger 
equation is far from settled. Recent numerical experiments 
(see [ 30, 3 1 ] for reviews) indicate (a) that certain solutions 
to NLS appear “choatic” even though the equation is 
known to be completely integrable and (b) that the degree 
of “chaos” decreases with the addition of high frequency 
modes. We feel that application of the inverse scattering 
approach to this intriguing problem may lead to important 
physical insight. The study of this problem, however, 
requires periodic boundary conditions, which are beyond 
the scope of this paper. In forthcoming papers we deal with 
both periodic boundary conditions and the search for 
“chaos” in NLS. 

The rest of the paper is organized as follows. In Section 2 
we discuss the physics of wave propagation as described by 
NLS and in Section 3 we give an overview of the associated 
inverse scattering transform. Section 4 discusses the numeri- 
cal approach for determining the direct scattering transform 
spectrum, while Section 5 relates this method to previous 
approaches. Numerical tests of the algorithm are given in 
Section 6. 

2. THE NONLINEAR SCHROEDINGER EQUATION 

The NLS equation describes the space-time evolution of 
nonlinear, narrow-banded, small amplitude wave trains in 
one space and one time dimensions (1 + 1) (Fig. 1). In 
standard dimensionless form NLS is written as 

4, -4x*- +20 1q1*q=o. (2.1) 

Depending upon the sign CJ ( = + 1) of the nonlinear term in 
this equation the motion is dominated primarily by either 
“shallow” or “deep water” wave physics. .The deep water (or 
focusing, CJ = - 1) case is known to have envelope solitons 
and “breather” solutions, results which have fueled recent 
conjectures about the possibility of coherent propagating 
wave packets in oceanic surface and internal wave motions 
[28-3 11. In the shallow (or defocusing, c = + 1) case, 
where envelope soliton solutions cannot occur, the motion 
is nevertheless still quite rich and is similar to wave 
propagation described by the Korteweg-de Vries (KdV) 
equation [16, 17, 20, 321. 

The history of the nonlinear Schroedinger equation dates 
back to 1847, when Stokes [33] determined an amplitude- 

dependent correction to the linear dispersion relation for 
surface water waves. More than a century later NLS was 
derived by Zakharov [27] and Hasimoto and Ono [34]; 
the amplitude-dependent correction found by Stokes deter- 
mines the nonlinear behavior of this equation. The NLS 
equation has since been obtained in a wide variety of physi- 
cal contexts from a large number of primitive nonintegrable 
PDEs [35]. For example, NLS has been derived in the 
context of water waves, plasma physics, and nonlinear 
optics [3640]. 

Generally speaking, NLS is derived from primitive PDEs 
by focusing on the slow space-time modulation of a quasi- 
monochromatic wave packet. NLS may also be derived 
from the KdV equation using the multiscale technique [ 16, 
17, 20, 32, and references cited therein]. The major advan- 
tage of this latter approach is that it gives the specific mathe- 
matical relationship between the scattering transform 
spectra for (defocusing) NLS and KdV for both infinite-line 
[41] and periodic boundary conditions [ 16, 17, 20, 321. 

A simple, heuristic derivation of NLS helps to explain 
why it is a generic equation [7]. Let 0(x, t) describe a 
narrow-banded complex wave field (the real wave 
amplitude is then defined by ~(x, t) = Re(O(x, t))), 
propagating in a dispersive medium in which the dispersion 
relation depends upon the modulus, o = w(k, 1012). The 
Fourier representation of 0(x, t) is: 

0(x, t) = j’” F(k) ei(kx-wt) dk. 
-00 

(2.2) 

For (2.2) to describe narrow-banded, nonlinear wave 
motion, F(k) must be sharply peaked around some k, 
(monochromatic wave propagation). We therefore expand 
o in a Taylor series around k = k, and 101 2 = 0. To leading 
order we obtain 

ocx, t) = ei(k-x- war) 
s 

+O” F(K) 
--oo 

xexp iKX-i KCO;+;CO;.+Ct loI2 

[ ( )I t drc, 

(2.3) 

where K = k -k,, w,, = w(k,, 0), and the prime denotes the 
derivative with respect to k. Here a is a constant which 
depends on the physics of the problem at hand. For exam- 
ple, surface water waves in shallow water have the disper- 
sion relation o=c,k-/3k3+a lQl2 for co=,/& B= 
c,h2/6, and a = -9c,/16k,h4 [ 19,341. If we set 0(x, t) = 
4(x, t) e i(kOx - W), where e i(kox - oor) denotes the carrier wave, 
and then taking the spatial and temporal derivatives of (2.3) 
we obtain 

4q, + &sJ + $4qxx - a I41 2 4 = 0 (2.4) 
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which can be put in the dimensionless form (2.1) by means 
of the transformation 

9’Jrn 

x+Jqzjjj(x-wbr) 

a=sgn(-a). 

(2.5) 

The sign 0 = + 1 distinguishes between the “stable” and 
“unstable” forms of NLS. The stable, or defocusing, case 
arises when 0 = + 1 for which there are no soliton solutions. 
In this case the wave motion behaves much like the KdV 
equation in the narrow-banded approximation [ 16, 17, 20, 
321. When ~7 = - 1 the NLS equation lies in the “focusing” 
regime and is linearly unstable to modulational perturba- 
tions; the initial condition q(x, 0) generally evolves over 
time into one or more solitons and radiation (see Fig. 1). 
Fermi-Pasta-Ulam recurrence prevails in the periodic 
problem [28-311. 

In this paper we develop a numerical algorithm for the 
direct spectral problem of the NLS equation on the infinite 
line. Infinite-line boundary conditions require (for NLS to 
have a well-behaved solution) that q(x, t) decay sufficiently 
fast so that as 1x1 + co, the Gelfand-Levitan-Marchenko 
integral equation solves NLS (see Section 3 below and [35] 
for details). 

The soliton solution to NLS (which occurs in the case 
0 = - 1) can be written as the complex function 

q(x, t) = qoe-i(k”po’) sech(px - rt), (2.6) 

where pz = /go/ *, o = k* - p2, and Y = 2pk. Solutions of this 
type have the remarkable property that they are preserved 
upon collision with each other, e.g., the interaction, while 
being quite nonlinear, is characterized by the fact that the 
solitons retain their shapes and speeds after the collision, 
but are phase shifted relative to their positions in the 
absence of the collision. In addition to (2.6) we also employ 
the N-soliton solution to the NLS equation for numerical 
checkout purposes [35,42]. 

3. THE INVERSE SCATTERING TRANSFORM FOR NLS 

IST can be thought of as a generalization of the linear 
Fourier transform (which solves linear partial differential 
equations) but, unlike that method, IST works only for 
specific classes of equations which are normally referred to 
as being “integrable.” The integrability implies the existence 
of an infinite number of conservation laws, the first few of 
which are the conservation of mass, momentum, and 
energy. 

The spectral problem for NLS is formulated as an eigen- 
value problem for an auxiliary spectral function $, in which 

the complex envelope q(x, t), the solution to NLS (2.1), acts 
as a “potential.” One shows that if q is a solution to NLS, 
the eigenvalue problem is isospectral; i.e., the soliton eigen- 
values do not change in time. One can then solve the linear 
eigenvalue problem for a certain time (say rO) to find the 
scattering transform spectrum (defined below in (3.8), 
(3.9)). The time dependencies of the spectrum are simple 
(Fourier-like, (3.10) below) and one can evaluate the spec- 
trum for any other time (say t,). This last step is the inverse 
problem and consists of solving a linear integral equation 
due to Gelfand, Levitan, and Marchenko (GLM, (3.11) 
below) [4]. 

The eigenvalue or spectral problem for NLS is [35] 

Yx= Q(C) vl, Q=(--;i Tj,), (3.l) 

where c is the (time-independent) complex spectral 
wavenumber. Given a suitable linear time evolution for the 
complex spectral field Y(x, [) = (II/, , t&), one obtains from 
the compatibility condition Yy,, = YX, the PDE for the 
potential q(x, t) (2.1) [35]. 

It is easily shown that if Y is a solution to (3.1), another 
linearly independent solution is given by p(x, [) 

9(x, i) = c ($;(‘i’:,‘) (3.2) 

for c an arbitrary constant. Following Ref. [35] we choose 
two solutions which have the following asymptotic 
behaviour 

Y(x, c)+ i eCfcx 
0 

as x+c/3 

(3.3) 
cD([, x)+ :, e-‘i” 

0 
as x---cc 

For associated solutions g and 6 we choose respectively 
c= 1 and c= -1 for which 

We then use the definition of the Wronskian, W(u, a) = 
~1~2-~2~1, which has the property 8 W/ax = 0, and show 
that W( Y, p) = 1 and W(@, 8) = - 1. The scattering 
coefficients are then defined by the expansions 

@(x3 c-1 = a(i) Y(x, 0 + b(i) vx, i) 
e% i) = 6(5) ‘y(x, 0 -a(i) m, 0. 

(3.5) 
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In the limit as x + co we obtain from (3.5): 

b(i) = lim &(x, 0 epiix 
x + 00 

(3.6) 
a([) = - lim f&(x, [) epiix = a*([*) 

x+00 

6(c) = lim &(x, [) eiiX = -frb*([*). 
x - cc 

The transmission coefficient a([) and reflection coefficient 
b(i) then satisfy: 

a([) a*(i*) - ab([) b*([*) = 1. (3.7) 

When CJ = - 1, the scattering problem (3.1) can have 
bound states (envelope solitons); these occur whenever a(c) 
has a zero in the upper half plane, Im(c) > 0 (and @ is 
proportional to 9). These zeros correspond to soliton 
solutions, e.g., nondispersive localized wave packets that 
collide elastically [4, 351. We denote the N zeros of a([) 
(soliton eigenvalues) by ck. 

When 0 = + 1 the eigenvalue problem (3.1) is hermitian 
and there are no eigenvalues with Im([) > 0. In this case no 
envelope soliton solutions are possible. 

The scattering spectrum for a complex envelope 
q(x, t = 0), is defined by: 

Discrete (soliton) spectrum, 

N eigenvalues ik E C for which u([~) = 0 

N phase coeflicients pk = 

(a’(i) = ww 

Continuous (radiation) spectrum, 

(3.9) 

Note that the discrete eigenvalues lie in the complex plane, 
while the continuous spectrum lies on the real axis. Given 
the quantities (3.8) and (3.9), one can reconstruct the 
potential field q(x, 0) by solving the GLM equation [4]. 
This reconstruction can conveniently be done at any value 
of time to determine q(x, t), One first determines the 
coefficients u(c), b(i) at some arbitrary time t by: 

b([, t) = b({, 0) exp( -4ii2t)). 
(3.10a) 

Thus a([, t) is time independent while b([, t) varies 
sinusoidally. The temporally varying scattering transform 
spectrum is then: 

(3.10b) 

p(C)=~. 

The temporal evolution of the envelope q(x, t) is governed 
by the Fourier-like relations (3.10a), as we now see. The 
inverse scattering transform is the solution to the GLM 
equation 

ax, Y) + oF*(x + Y) 

+ole dsJm drK( x,r)F(r+s)F*(s+y)=O. (3.11) 
x x 

Here the kernel F(x) is given in terms of the spectrum 

F(x)=&jy ~(5, t)eiSXd<-i : pk(t)eiikx (3.12) 
m k=l 

and the potential field (the solution to the KdV equation) is 
reconstructed (at time t) by the formula 

q(x, t) = -2K(x, x; t). (3.13) 

In summary the direct scattering transform consists of 
computing the spectrum (3.8), (3.9). Time evolution of the 
spectrum is determined by (3.10). The inverse scattering 
transform generates the spatial-temporal solution to NLS 
(3.11 k(3.13). Note that time, which plays the role of a 
parameter in the inverse problem, has been suppressed in 
(3.11). 

Conservation laws for the NLS equation are found by an 
asymptotic expansion of the field Y in inverse powers of i 
[3]. This method gives the infinite number of conserved 
quantities both in terms of the field q(x, t) and in terms of 
the scattering data. The first of these quantities is the mass: 

Co = -CT r;,,” [q(x, t)12 dx 

+CC hl lU(<)12 d5 + f 2i(@ - ck). (3.14) 
k=l 

This equation, a generalization of the Parseval relation for 
the Fourier transform, is useful in the numerical implemen- 
tation of the DST, as discussed below. The time evolution of 
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the scattering spectrum (3.10) emphasizes the deep 
similitude between the DST and the Fourier transform. 

We now show explicitly that for a “small-amplitude” 
envelope q(x, 0), the scattering transform spectrum tends to 
the Fourier spectrum [4]. Let the complex envelope be of 
order E, q(x, 0) + Eq(x, 0), for E small. The direct scattering 
problem becomes 

(3.15) 

A solution with the asymptotic behavior of @ (3.3)-(3.4) 
is then of the form, 

(I(x)=e~i~~(~+~~~lq(x,0)e2’i’dx) 

(3.16) 

d*(x) = PE i’, aq*(x, 0) e-2iCX dx, 

to leading order in E, so that from (3.6) we find 

a([) = 1+ E I+ m q(x, 0) eziix dx 
-co 

(3.17) 

h(i)=~J+~ aq*(x,0)ep2iC”dx. 
--m 

Using the definition of the Fourier transform, 

F[u(x), kl =&,‘I u(x) ecikx dx, (3.18) 

we see that for real c = 5, 

a(i) = 1 + E fi F[q(x, 0); -253 

b(i) = & J5i aF*[q(x, 0); -251 
(3.19) 

and then, by (3.9), at leading order, 

P(5)=EfiaF*Cq(x,O); -251. (3.20) 

This latter result may be understood best by linearizing 
(3.11), 

q(x, 0) = -2K(x, x) = 2aF*(2x), (3.21) 

and remembering that, for a “small” potential (of order E) 
there are no discrete eigenvalues, so from (3.12), 

q(x, 0) = f i:: p*(5) e-*“” d5. (3.22) 

Thus (3.20), together with (3.22), shows that the continuous 
spectrum p(5) (3.9) reduces to the ordinary Fourier trans- 
form in the linear limit of the wave motion. Note, further, 
that in the linear limit relation, (3.14) reduces exactly to the 
Parseval equation: 

j’: ldx, O)l’dx= j+” IF(q, 4)1* d5. (3.21) 
-02 

4. A NUMERICAL METHOD FOR THE DIRECT 
SCATTERING TRANSFORM 

We now develop a numerical algorithm for the direct 
scattering transform in wavenumber space. The algorithm 
uses a discretization of the complex wave envelope q(x, 0) in 
2M + 1 steps of constant values qn at points x, = n Ax with 
spatial interval Ax = L/M (where 2L is the width of the 
wave train centered on x = 0, i.e., q(x, 0) = 0 for 1x1 b L; see 
Fig. 2). The solution of the spectral eigenfunction Yin each 
interval Ax is then obtained by direct integration of (3.1), 

Wn + Ax) = Vq,) ~u(x,A (4.1) 

where U(q, Ax) is the exponential of the trace-vanishing 
matrix Q(i) (3.1), 

i 

cosh(k dx) -: sinh(k dx) 
= 

$ sinh(k dx) 

(4.2) 
and k* = g [ql* - [* is constant inside an interval Ax. There- 
fore, we have used a standard exponential propagator 
method to solve the scattering problem (3.1) when q(x, 0) is 
constant in the interval Ax [43]. 

We now introduce a four-component field consisting of Y 
and its derivative with respect to [, 

(4.3) 

where Y’ = aY/a[. For the field Z we have a recursion 
relation given in terms of (4.2) by 

where 

E(x, + Ax) = T(q,) E(x,), (4.4a) 

T(q,) = VqJ 0 
U’(qJ Vq,) > 

(4.4b) 

581:102.‘2-3 
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is a four-by-four matrix and U’(q,) = dU(q,)/d< is given by 

i2 U;,=iAxpcosh(kAx)- 

sinh(k Ax) 
k 

q*i 
(4.5) 

u;,= -- 
k2 

Ax cosh(k Ax) - 
sinh(k Ax) 

k 
> 

> 

sinh(k Ax) 
k . 

The discretization of q(x, 0) in 2M + 1 constant steps, 

dx, 0) = qn x,,-$;x.+$ , 1 (4.6) 

allows us to write the (discrete) solution to the scattering 
problem as 

M 

E(x,) = n T(q,) E(.LM). (4.7) 
,=n- I 

The scattering coefficients can now be obtained from rela- 
tions (3.5) in terms of a scattering matrix S which is written 
in terms of the submatrix C and its derivative Z’ = &X/a[, 

(4.8) 
j=M-I 

where 

--M 

(4.9) 
j=M-I 

Formally speaking, the matrix S(c) carries solutions of the 
eigenvalue problem (3.1) from - co to + co; numerically, 
S(c) carries solutions (4.3) of (3.1) from -L to L. We write 
this result 

where from (3.3)-(3.5) we know that 

Y(-L,[)= i eiCL 
0 

(4.11) 

YP(L, [) = a(c) 
0 

A eCiiL + b(c) (y) eiCL. 

Inserting (4.11) into (4.10), we determine the scattering 
coefficients and their derivatives: 

a(i) = S,,(c) eziiL 

b(i) = S,,(i) 

y= [S31 + iL(S,, + S,,)] eZiiL 
(4.12) 

Wt-) - = S,, + iL( Sd3 - S,, ). 
x 

We now briefly summarize the above numerical algo- 
rithm for determination of the scattering transform spec- 
trum. Given a discrete complex envelope function qn = 
q(x,, 0) (-M<n GM), compute the U(q,) and U’(q,) 
matrices (4.2), (4.5) for each discrete point q,, and form the 
matrix T(q,) by (4.4b). The scattering matrix S(i) is then 
found by (4.8) as a product of the 2M T(q,) matrices (or in 
terms of the Z(c) matrices (4.8), (4.9)). The transmission 
and reflection coefficients a([), b(i) are computed from 
(4.12). The discrete soliton spectrum is then given by the 
solutions of (3.8) and the continuous spectrum by (3.9). To 
find the numerical solutions of (3.8) we implemented a 
standard iterative Newton method for determining the zeros 
of a(ik) = 0, where the lk are complex numbers. Knowledge 
of the analytical form for the derivative of the scattering 
coefficients (4.12) makes convergence of the algorithm very 
fast and accurate. 

Before discussing the numerical results we make some 
general remarks about our algorithm: 

(i) Because k is given by the square root of a complex 
number (k = ,/w), we could be faced with an 
ambiguous sign convention in the complex plane; but the 
choice of U(q) in the form (4.2) avoids this possibility 
because the matrix T(q) is independent of the choice of the 
sign of k. 

(ii) The matrices T(q) and U(q) have determinant 
equal to one, so that the relation (3.7) for the scattering 
coefficients a(<), b( 0 is automatically satisfied. 

(iii) In the case Ax < 1, the matrix U(q) (4.2) reduces to 

U(q) = 
1-i[Ax q Ax 
aq* Ax > l+icAx ’ 

(4.13) 

This is the form employed directly by Ablowitz and Ladik 
to study the discrete NLS equation [25,26-j. They derived 
a numerical scheme for integrating the NLS equation (as 
well as many other integrable equations) from the discrete 
scattering problem (4.13). The strength of their method is 
that, for certain discrete evolution equations, it is com- 
pletely integrable by the inverse scattering transform. Their 
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approach turns out to not be very useful for the analysis of 
experimental data (especially for a small number of data 
points) because (4.13) is a discretization at first order in Ax 
of the associated continuous problem. In a separate study 
we find that the error in the numerical spectrum as com- 
puted by the method of Ablowitz and Ladik is proportional 
to Ax, while the approach given herein has errors propor- 
tional to (Ax)~ [44]. 

(iv) The search for the discrete spectrum is conducted 
only in the upper half of the complex [ plane. This is a con- 
sequence of a symmetry of the IST spectrum for the NLS 
equation, whose solutions are invariant for transformations 
ofthediscretespectrumoftheform (ik,pk)+ ([z, --pjj-l) 
C461. 

5. CONNECTION TO PREVIOUS NUMERICAL 
APPROACHES 

It is well known that the general AKNS scattering 
problem [4] contains, as a particular case, the scattering 
problem for the KdV equation on the infinite interval. The 
IST for the KdV equation has been considered by Osborne 
[ 223 (see also [ 23 ] ), who developed a numerical algorithm 
for computing the scattering transform spectrum. It is 
worthwhile considering how the method presented here 
relates to this previous approach. 

The numerical algorithm described in Section 4 can be 
extended to the general AKNS problem simply by substi- 
tuting oq*(x) by a second function T(X) in every formula. It 
is known that the scattering problem for the KdV equation 
is obtainable from the AKNS problem by setting T(X) = - 1 
[35]. This implies replacing aq* in Section 4 with - 1 and 
we obtain from (4.1 k(4.2) 

- ki sinh, ti2(n) = 0, (5.lb) 

where we have used k, = ,/q, cash, = cosh(k, Ax), 
sinh, = sinh(k, Ax), and $,(n) = $;(x,). Using a two- 
component field @ defined by 

(5.2) 
I)- p 4,(n) 

” 

and defining p, = ik,, we obtaind a one-step algorithm 
analogous to (4.1): 

( )( 
h(n+l) = WP”) 

d2(n+ 1) 

y!d $,(n) 
” (5.3) 

- pn sin(pJ WP,) 1 
( > d2(n) ’ 

This result may also be derived from the Schroedinger 
eigenvalue problem for the KdV equation by applying the 
procedure of Section 4 above [44]. 

The computation of the scattering coefficients given in 
Osborne [22] is by means of a two-point algorithm: one 
solves the scattering problem for the potential barrier 
between two points x, and x, + , , obtaining the matrix AT, 

that connects the solution of the eigenvalues problem from 
X n + 1 to x,. The scattering coefficients are then essentially 
given by the product of the 2M matrices AT . 

M-l 

M’= n AT,, 
II= --M 

In terms of our notation, the matrix M 
tially by the inverse of the matrix C (4.11): 

?7. 

(5.4) 

is given essen- 

M-1 
Z-l= n- UF(qJ. (5.5) 

“= -A4 

We now rewrite the matrix U-‘(q) in terms of a diagonal 
matrix, 

so that, rearranging the products in (5.5), we can express 
matrix C -I in terms of a new matrix AT,, 

i 

Pn+Pn+I 

AT,= 2P, 
exp( - ip, dx) ” I;. + ’ exp( - ip, Ax) 

p.+;.+, 
> 

Pn-Pn+’ exp(ip, Ax) 
2Pn 2Pn 

exp(k Ax) 

(5.7) 

that is exactly the matrix introduced in [22]. 
It is important to note that the AT, matrix describes a parti- 

tion-to-partition algorithm for KdV. Thus AT, corresponds to 
the passage from the nth partition to the (n + 1)th partition in 
the input space series. 

The algorithm derived in Section 4 for NLS may instead be 
viewed as a point-to-point algorithm, which arises as a conse- 
quence of the propagator method used herein. We have seen 
above that the formulation given in Section 4 for NLS is 
equivalent to the partition-to-partition formulation of [22] for 
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KdV: a major advantage of the present formulation is its 

immediate applicability to problems in the AKNS class with 
periodic boundary conditions [45]. 

6. NUMERICAL RESULTS 

The discrete algorithm described above has been 
implemented on a vector processor (FPS 500) with Fortran 
code. When cr = - 1 the program computes the scattering 
coefficient a(i) in a chosen domain of the upper half 
complex plane [. After the discrete spectrum is determined, 
the program computes the continuous spectrum p(t) on the 
real axis (3.9). If o = + 1 the program computes only the 
continuous spectrum. Finally the program performs some 
tests on the resultant spectrum using the “generalized 
Parseval relation” (3.14) to check if all the eigenvalues have 
been found. 

We now consider several numerical examples in Figs. 3-8; 
we graph three different panels (a)-(c) to illustrate the 
results of each example. In the first of these panels (a) we 
plot the modulus of q(x, t) to show the space-time evolution 
of the example as given by the NLS equation (computed by 
numerically integrating NLS, using a spectral method 
[ 291). In the second panel (b) for each example we graph in 
the complex plane [ the quantity ln[l + la([)1 -‘I; this 
allows the discrete eigenvalues to be easily recognized by 
their associated sharp peaks. The last of the three panels (c) 
gives the continuous spectrum: it shows the modulus of p(5) 
compared with the associated modulus of the linear Fourier 
spectrum, which is normalized by a factor fi as in (3.20). 

The first example (Fig. 3) has no continuous spectrum 
because the wave motion consists of a single soliton as given 
by (2.6). We have chosen qO = -k = 1 so that the eigenvalue 
is cl = i(l + i) and pr = --i [4]. The numerical results 
(Table I) show that the discrete eigenvalue is found to a 
good approximation even with a small number of discretiza- 
tion points, while the convergence to the coefficient pr is 
much slower. Fig. 3 shows the results for the 2048-point 
case. The Fourier spectrum (Fig. 3c) is large because it 

TABLE I 

Numerical Results of the Analysis of a Single Soliton Solution to 
NLS for Various Values of the Number of Discrete Points 

Points Ax [, found p, found bo 

32 0.6250 0.48867 + i0.47879 0.21506 - i0.67733 0.03624 
128 0.1563 0.49932 + i0.49865 0.07191 - i0.91974 0.00246 
512 0.0390 0.49996 + i0.49992 0.01915 - iO.9803 1 o.OOOo2 

2048 0.0098 0.50000 + i0.49999 0.00486 - i0.99511 0.00001 
Exact 0.5 + io.5 --i 0 

Nore. Ax is the discretization interval; [r and p1 are the coefficients of 
the discrete spectrum; b, is defined as the area under the continuous 

FIG. 3. One-soliton solution to the NLS equation in the focusing 
regime (c = - 1). Plot (a) shows the time evolution ofA(x, t). The spectral 
data in the complex plane c show a sharp peak associated with the soliton 
(b). Note the smallness of the continuous spectrum in (c) (solid line, that 
is theoretically zero), compared with the linear Fourier spectrum (dashed 
line). spectrum, theoretically zero in the present example. 

a 

b 

i 
Re(<) 



SCATTERING TRANSFORM FOR NONLINEAR SCHROEDINGER 261 

a 

b 

FIG. 4. A two-soliton (“breather”) solution to the NLS equation in 
the focusing regime (u = - 1). Because the initial wave envelope q(x, 0) is 
a real function, the two solitons do not separate in time, but instead form 
a periodically-evolving bound state, a “breather” (a). In (b) the discrete 
spectrum associated with the two soliton components of the breather. As 
in the previous case in Fig. 3, the continuous spectrum (solid line, theoreti- 
cally zero) is many orders of magnitude smaller than the linear Fourier 
spectrum (dashed line) in (c). 

contains the solitonic components, while the continuous 
spectrum is three orders of magnitude smaller; it is non-zero 
only because of the piecewise discretization algorithm used 
herein. This constitutes a noise component in algorithms of 
this type, which are discussed in detail elsewhere [23]; 
generally this small error approaches zero as dx + 0, as 
illustrated in Table I. 

As a second example we have chosen a two-soliton solu- 
tion to the NLS equation given by Hirota’s formula [42] 
for 2048 points. In Fig. 4a we give the space-time evolution 
of two interacting solitons with amplitudes q, = 1.0 and 
q2=0.4; the wavenumbers are set k, = k, =0 so that the 
solitons have zero velocity and therefore do not separate in 
time (this solution is called a “breather”). In Fig. 4b we find 
the two eigenvalues to excellent precision and, in Fig. 4c, the 
continuous spectrum is seen to be quite small, live orders 
of magnitude lower than the linear Fourier spectrum. 
The non-zero continuous spectrum again results from 
the piecewise constant nature of the discrete algorithm 
employed here. 

To have a theoretically non-zero continuous spectrum, 
we now choose an initial wave with a gaussian profile: 

q(x, 0) = qoe--r2. (6.1) 

if the amplitude q. is small enough we find that no solitons 
emerge from the initial wave (in fact, one can evaluate a 
minimal value of the “mass” Co of the wave train in order to 
have soliton formation [4]). In Fig. 5a we choose a small 
value for q. ( =0.2) and the initial wave is seen to disperse 
in time. This is confirmed by the absence of any discrete 
eigenvalues (Fig. 5b). The energy of the wave then lies com- 
pletely in the continuous spectrum (Fig. 5c), which is very 
close to the linear Fourier spectrum, and the time evolution 
is typical of nearly linear dispersive motion. 

The amplitude of the gaussian envelope is increased in 
Fig. 6 (q. = 2.0) and we see that the wave field now has 
enough mass to generate a soliton (Figs. 6a, b). The 
continuous spectrum (Fig. 6c) has given up some energy 
with respect to the Fourier spectrum in order to create 
the soliton. Scrutiny of Fig. 6c indicates that the energy 
for the soliton comes mainly from the low-wavenumber 
components of the spectrum. 

The same gaussian initial condition evolves without 
generating solitons for defocusing NLS (a = + 1, Fig. 7). All 
the energy of the wave disperses in time, but the Fourier 
spectrum is no longer close to the continuous spectrum 
because the amplitude is no longer small. 

With a higher amplitude the gaussian initial wave can 
generate several solitons when G = - 1. In (Fig. 8a) we can 
see a two-soliton breather emerging from the gaussian 
profile. Because the initial condition (6.1) is real, the 
solitons have no phase velocity, so they do not separate in 
time. 
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FIG. 5. Gaussian initial condition q(x, 0) in the focusing regime 
(u= -1). The initial wave is too small to generate a soliton 
(amplitude = 0.2) so that it disperses in time (a). The absence of sohtons is 
confirmed by the absence of spectral peaks in the complex [ plane (b). The 
small amplitude of the initial wave reduces the NLS equation to a quasi- 
linear regime, so the continuous spectrum (solid line) is close to the linear 
Fourier spectrum (dashed line) in (c). 

16” 
4 

FIG. 6. The same initial condition of Fig. 5 but with a larger 
amplitude (the amplitude is now 2.0) in the focusing regime (c = - 1). The 
gaussian initial wave has enough energy to create a soliton (a) that is found 
by the numerical DST algorithm (b). The continuous spectrum (solid line) 
loses some energy at low frequency, due to the formation of the soliton, 
with respect to the case of Fig. 5. 
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FIG. 7. Analysis of the same initial condition of Fig. 6 
(amplitude = 2.0) in the defocusing regime (u = 1). Since in this case there 
are no soliton solutions, the initial wave evolves dispersively (a). The spec- 
tral plane (b) contains no soliton peaks, while the continuous spectrum 
(solid line, (c)) is quite similar to the linear Fourier spectrum (dashed line). 

b 

a 

: 

FIG. 8. Gaussian initial condition (amplitude = 3.0) in the focusing 
regime ((T= -1). With larger energy (compare to Fig. 6) the solution 
evolves into a two-soliton breather (a). The two components of the 
breather are found by the numerical algorithm (b). The wave is not purely 
solitonic because of the presence of a continuous spectrum (solid line, (c)) 
which is somewhat larger near the peak than the linear Fourier spectrum 
(dashed line). 
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